Package: funModeling 1.9.4

funModeling: Exploratory Data Analysis and Data Preparation Tool-Box

Around 10% of almost any predictive modeling project is spent in predictive modeling, 'funModeling' and the book Data Science Live Book (<https://livebook.datascienceheroes.com/>) are intended to cover remaining 90%: data preparation, profiling, selecting best variables 'dataViz', assessing model performance and other functions.

Authors:Pablo Casas [aut, cre]

funModeling_1.9.4.tar.gz
funModeling_1.9.4.zip(r-4.5)funModeling_1.9.4.zip(r-4.4)funModeling_1.9.4.zip(r-4.3)
funModeling_1.9.4.tgz(r-4.4-any)funModeling_1.9.4.tgz(r-4.3-any)
funModeling_1.9.4.tar.gz(r-4.5-noble)funModeling_1.9.4.tar.gz(r-4.4-noble)
funModeling_1.9.4.tgz(r-4.4-emscripten)funModeling_1.9.4.tgz(r-4.3-emscripten)
funModeling.pdf |funModeling.html
funModeling/json (API)

# Install 'funModeling' in R:
install.packages('funModeling', repos = c('https://pablo14.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/pablo14/funmodeling/issues

Datasets:

On CRAN:

8.31 score 100 stars 638 scripts 2.1k downloads 36 exports 81 dependencies

Last updated 1 years agofrom:c04e72293d. Checks:OK: 7. Indexed: yes.

TargetResultDate
Doc / VignettesOKOct 29 2024
R-4.5-winOKOct 29 2024
R-4.5-linuxOKOct 29 2024
R-4.4-winOKOct 29 2024
R-4.4-macOKOct 29 2024
R-4.3-winOKOct 29 2024
R-4.3-macOKOct 29 2024

Exports:auto_groupingcateg_analysiscompare_dfconcatenate_n_varsconvert_df_to_categoriccoord_plotcorrelation_tablecross_plotdata_integritydata_integrity_modeldesc_groupsdesc_groups_rankdf_statusdiscretize_dfdiscretize_get_binsdiscretize_rgrentropy_2equal_freqexport_plotfibonaccifreqgain_liftgain_ratioget_samplehampel_outlierinfor_magicinformation_gainplot_numplotarprep_outliersprofiling_numrange01statustukey_outlierv_comparevar_rank_info

Dependencies:backportsbase64encbitopsbslibcachemcaToolscheckmatecliclustercolorspacedata.tabledigestdplyrentropyevaluatefansifarverfastmapfontawesomeforeignFormulafsgenericsggplot2gluegplotsgridExtragtablegtoolshighrHmischtmlTablehtmltoolshtmlwidgetsisobandjquerylibjsonliteKernSmoothknitrlabelinglatticelazyevallifecyclemagrittrMASSMatrixmemoisemgcvmimemomentsmunsellnlmennetpanderpillarpkgconfigplyrR6rappdirsRColorBrewerRcppreshape2rlangrmarkdownROCRrpartrstudioapisassscalesstringistringrtibbletidyselecttinytexutf8vctrsviridisviridisLitewithrxfunyaml

funModeling quick-start

Rendered fromfunModeling_quickstart.Rmdusingknitr::rmarkdownon Oct 29 2024.

Last update: 2023-07-11
Started: 2018-01-17

Readme and manuals

Help Manual

Help pageTopics
funModeling: Exploratory data analysis, data preparation and model performancefunModeling-package funModeling
Reduce cardinality in categorical variable by automatic groupingauto_grouping
Profiling analysis of categorical vs. target variablecateg_analysis
Compare two data frames by keyscompare_df
Concatenate 'N' variablesconcatenate_n_vars
Convert every column in a data frame to characterconvert_df_to_categoric
Coordinate plotcoord_plot
Get correlation against target variablecorrelation_table
Cross-plotting input variable vs. target variablecross_plot
People with flu datadata_country
Play golfdata_golf
Data integritydata_integrity
Check data integrity modeldata_integrity_model
Profiling categorical variabledesc_groups
Profiling categorical variable (rank)desc_groups_rank
Get a summary for the given data frame (o vector).df_status
Discretize a data framediscretize_df
Get the data frame thresholds for discretizationdiscretize_get_bins
Variable discretization by gain ratio maximizationdiscretize_rgr
Computes the entropy between two variablesentropy_2
Equal frequency binningequal_freq
Export plot to jpeg fileexport_plot
Fibonacci seriesfibonacci
Frequency table for categorical variablesfreq
Generates lift and cumulative gain performance table and plotgain_lift
Gain ratiogain_ratio
Sampling training and test dataget_sample
Hampel Outlier Thresholdhampel_outlier
Heart Disease Dataheart_disease
Computes several information theory metrics between two vectorsinfor_magic
Information gaininformation_gain
Metadata models data integritymetadata_models
Plotting numerical dataplot_num
Correlation plotsplotar
Outliers Data Preparationprep_outliers
Profiling numerical dataprofiling_num
Transform a variable into the [0-1] rangerange01
Get a summary for the given data frame (o vector).status
Tukey Outlier Thresholdtukey_outlier
Compare two vectorsv_compare
Importance variable ranking based on information theoryvar_rank_info